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Abstract

In this paper we study the spectrum of bosonic string theory on AdS3. We study

classical solutions of the SL(2, R) WZW model, including solutions for long strings

with non-zero winding number. We show that the model has a symmetry relating

string configurations with different winding numbers. We then study the Hilbert space

of the WZW model, including all states related by the above symmetry. This leads

to a precise description of long strings. We prove a no-ghost theorem for all the

representations that are involved and discuss the scattering of the long string.

1On leave of absence from the University of California, Berkeley.



1 Introduction

In this paper we study the spectrum of critical bosonic string theory on AdS3 × M
with NS-NS backgrounds, where M is a compact space. Understanding string theory

on AdS3 is interesting from the point of view of the AdS/CFT correspondence since

it enables us to study the correspondence beyond the gravity approximation. Another

motivation is to understand string theory on a curved space-time, where the timelike

component g00 of the metric is non-trivial.

This involves understanding the SL(2, R) WZW model. In this paper, we always

consider the case when the target space is the universal cover of the SL(2, R) group

manifold so that the timelike direction is non-compact. The states of the WZW model

form representations of the current algebras ŜL(2, R)L × ŜL(2, R)R. Once we know

which representations of these algebras appear, we can find the physical states of a

string in AdS3 by imposing the Virasoro constraints on the representation spaces. The

problem is to find the set of representations that one should consider. In WZW models

for compact groups, the unitarity restricts the possible representations [1]. Represen-

tations of ŜL(2, R), on the other hand, are not unitary except for the trivial repre-

sentation. Of course this is not a surprise; the physical requirement is that states

should have non-negative norms only after we impose the Virasoro constraints. Previ-

ous work on the subject [2, 3, 4, 5, 6, 7, 8, 9, 10] typically considered representations

with L0 bounded below and concluded that the physical spectrum does not contain

negative norm states if there is the restriction 0 < j < k/2 on the SL(2, R) spin j of

the representation; the spin of the SL(2, R) is roughly the mass of the string state in

AdS3.

This restriction raises two puzzles. One is that it seems to imply an upper bound on

the mass of the string states in AdS3 so that the internal energy of the string could not

be too high. For example, if the compact space M has a nontrivial 1-cycle, we find that

there is an upper bound on the winding number on the cycle. This restriction, which

is independent of the string coupling, looks very arbitrary and raises doubts about the

consistency of the theory. The second puzzle is that, on physical grounds, we expect

that the theory contains states corresponding to the long strings of [11, 12]. These

are finite energy states where we have a long string stretched close to the boundary of

AdS3. These states are not found in any representation with L0 bounded below. In this

paper, we propose that the Hilbert space of the WZW model includes a new type of

representations, and we show that this proposal resolves both the puzzles. In these new

representations, L0 is not bounded below. They are obtained by acting on the standard

representations by elements of the loop group that are not continuously connected

to the identity, through an operation called spectral flow. These representations in

the SL(2, R) WZW model have also been considered, with some minor variations, in
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[13, 14]. The authors of these papers were motivated by finding a modular invariant

partition function. They were, however, considering the case when the target space is

SL(2, R) group manifold and not its universal cover.

Throughout this paper, we consider AdS3 in global coordinates, which do not have

a coordinate horizon. In these coordinates, the unitarity issue becomes clearer since

strings cannot fall behind any horizon. The interested reader could refer to [15, 16,

17] for studies involving AdS3 in Poincare coordinates. From the point of view of

the AdS/CFT correspondence, it is the spectrum of strings on AdS3 in the global

coordinates that determines the spectrum of conformal dimensions of operators in the

boundary CFT, though in principle the same information could be extracted from the

theory in Poincare coordinates.

In order to completely settle the question of consistency of the SL(2, R) WZW model,

one needs to show that the OPE of two elements of the set of representations that we

consider contains only elements of this set. We plan to discuss this issue in our future

publication.

The organization of this paper is as follows. In section 2, we study classical solutions

of the SL(2, R) WZW model and we show that the model has a spectral flow symmetry

which relates various solutions. In section 3, we do a semi-classical analysis and have the

first glimpse of what happens when we raises the internal excitation of the string beyond

the upper bound implied by the restriction j < k/2. In section 4, we study the full

quantum problem and we propose a set of representations that gives a spectrum for the

model with the correct semi-classical limits. In section 5, we briefly discuss scattering

amplitudes involving the long strings. We conclude the paper with a summary of our

results in section 6. In appendix A, we extend the proof of the no-ghost theorem for

the representations we introduced in section 4. In appendix B, we study the one-loop

partition function in AdS3 with the Lorentzian signature metric and show how the sum

over spectral flow reproduces the result [18] after taking an Euclidean signature metric,

up to contact terms in the modular parameters of the worldsheet.

2 Classical solutions

We start by choosing a parameterization of the SL(2, R) group element as

g = eiuσ2eρσ3eivσ2

=

(
cos t cosh ρ+ cosφ sinh ρ sin t cosh ρ− sin φ sinh ρ
− sin t cosh ρ− sinφ sinh ρ cos t cosh ρ− cosφ sinh ρ

)
.

(1)
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Here σi (i = 1, 2, 3) are the Pauli matrices2, and we set

u =
1

2
(t+ φ) , v =

1

2
(t− φ). (2)

Another useful parameterization of g is

g =

(
X−1 +X1 X0 −X2

−X0 −X2 X−1 −X1

)
, (3)

with

X2
−1 +X2

0 −X2
1 −X2

2 = 1. (4)

This parameterization shows that the SL(2, R) group manifold is a 3-dimensional hy-

perboloid. The metric on AdS3,

ds2 = −dX2
−1 − dX2

0 + dX2
1 + dX2

2 ,

is expressed in the global coordinates (t, φ, ρ) as

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2. (5)

We will always work on the universal cover of the hyperboloid (4), and t is non-compact.

Our theory has the WZW action

S =
k

8πα′

∫
d2σTr

(
g−1∂gg−1∂g

)
+ kΓWZ (6)

The level k is not quantized since H3 vanishes for SL(2, R). The semi-classical limit

corresponds to large k. We define the right and left moving coordinates on the world-

sheet as,

x± = τ ± σ, (7)

where σ is periodic with the period 2π. This action has a set of conserved right and

left moving currents

Ja
R(x+) = kTr

(
T a∂+gg

−1
)
, Ja

L(x−) = kTr
(
T a∗g−1∂−g

)
(8)

where T a are a basis for the SL(2, R) Lie algebra. It is convenient to take them as

T 3 = − i

2
σ2, T± =

1

2
(σ3 ± iσ1).

2σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.
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In terms of our parameterization, the currents are expressed as

J3
R =k(∂+u+ cosh 2ρ∂+v)

J±
R =k(∂+ρ± i sinh 2ρ∂+v)e

∓i2u ,
(9)

and
J3

L =k(∂−v + cosh 2ρ∂−u)

J±
L =k(∂−ρ± i sinh 2ρ∂−u)e

∓i2v .
(10)

The zero modes of J3
R,L are related to the energy E and angular momentum ℓ in AdS3

as

J3
0 =

∫ 2π

0

dx+

2π
J3

R =
1

2
(E + ℓ)

J̄3
0 =

∫ 2π

0

dx−

2π
J3

L =
1

2
(E − ℓ).

(11)

The second Casimir of SL(2, R) is

c2 = JaJa =
1

2

(
J+J− + J−J+

)
− (J3)2 . (12)

The equations of motion derived from (6) is ∂−(∂+gg
−1) = 0, namely that the

currents, JR and JL, are purely right or left moving as indicated. A general solution

of the equations of motion for SL(2, R) is the product of two group elements each of

which depends only on x+ or x− as

g = g+(x+)g−(x−). (13)

Comparing (13) with (1) we can find the embedding of the worldsheet in AdS3. The

requirement that the string is closed under σ → σ + 2π imposes the constraint,

g+(x+ + 2π) = g+(x+)M, g−(x− − 2π) = M−1g−(x−), (14)

with the same M ∈ SL(2, R) for both g+ and g−. The monodromy matrix M is only

defined up to a conjugation by SL(2, R), and classical solutions of the WZW model

are classified according to the conjugacy class of M .

For strings on AdS3 ×M, we should impose the Virasoro constraints

T total
++ = TAdS

++ + T other
++ = 0 (15)

and similarly T total
−− = 0, where

TAdS
++ =

1

k
Ja

RJ
a
R

is the energy-momentum tensor for the AdS3 part3 and T other
++ represents the energy-

momentum tensor for the sigma-model on M.

Let us analyze some simple classical solutions.
3In the quantum theory, we will have the same expression but with k → k − 2.
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2.1 Geodesics in AdS3

(A) (B)

t

Figure 1: Timelike geodesic; (A) a solution (18) with U = V = 1, (B) a general
geodesic is obtained by acting the SL(2, R) × SL(2, R) isometry on (A).

Consider a solution

g+ = Ueiv+(x+)σ2 , g− = eiu−(x−)σ2V, (16)

where U and V are constant elements of SL(2, R). The energy momentum tensor of

this solution is

TAdS
++ = −k(∂+v+)2, TAdS

−− = −k(∂−u−)2. (17)

Suppose we have some string excitation in the compact part M of AdS3 ×M, and set

T other
±± = h for some constant h > 0. We may regard h as a conformal weight of the

sigma-model on M. The Virasoro constraints T total
±± = 0 implies

(∂+v+)2 = (∂−u−)2 =
h

k
.

Thus we can set v+ = αx+/2 and u− = αx−/2 where α = ±
√

4h/k. Substituting this

in (13), we obtain

g = U

(
cos(ατ) sin(ατ)
− sin(ατ) cos(ατ)

)
V. (18)

Since the solution depends only on τ and not on σ, we interpret that the string is

collapsed to a point which flows along the trajectory in AdS3 parameterized by τ . See

Figure 1. If U = V = 1, the solution (18) represents a particle sitting at the center of

AdS3,

t = ατ, ρ = 0. (19)
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(A) (B)

t

Figure 2: Spacelike geodesic; (A) a solution (21) with U = V = 1, (B) a general
geodesic is obtained by acting the SL(2, R) × SL(2, R) isometry on (A).

A more general solution (18) is given by acting the SL(2, R) × SL(2, R) isometry on

(19), and therefore it is a timelike geodesic4 in AdS3. For this solution, the currents

are given by

Ja
RT

a =
k

2
αUT 3U−1, (20)

and similarly for JL. The monodromy matrix M defined by (14) is

M =

(
cos(απ) sin(απ)
− sin(απ) cos(απ)

)

and belongs to the elliptic conjugacy class SL(2, R).

A solution corresponding to a spacelike geodesic is

g = U

(
eατ 0
0 e−ατ

)
V, (21)

with U, V ∈ SL(2, R). The energy-momentum tensor has a sign opposite of (17)

TAdS
±± =

1

4
kα2. (22)

If we choose U = V = 1, the solution is simply a straight line cutting the spacelike

section t = 0 of AdS3 diagonally,

t = 0, ρeiφ = ατ, (23)

4In fact, any timelike geodesic can be expressed in the form (18).

6



See Figure 2 (A). A general solution (21) is given from this by the action of the isometry,

and therefore is a spacelike geodesic. The currents for this solution are

Ja
RT

a =
k

2
αUT 1U−1, (24)

and the monodromy matrix is

M =

(
eαπ 0
0 e−απ

)
,

which belongs to the hyperbolic conjugacy class of SL(2, R).

There is one more class of solutions whose monodromy matrices are in the parabolic

conjugacy class of SL(2, R). They correspond to null geodesics in AdS3.

2.2 Spectral flow and strings with winding numbers

Given one classical solution g = g̃+g̃−, we can generate new solutions by the following

operation,

g+ = ei 1
2
wRx+σ2 g̃+ g− = g̃−e

i 1
2
wLx−σ2 . (25)

Comparing this with the parameterization (1) of g = g+g−, we see that this operation

amounts to

t→ t+
1

2
(wR + wL)τ +

1

2
(wR − wL)σ

φ→ φ+
1

2
(wR + wL)σ +

1

2
(wR − wL)τ.

(26)

The periodicity of the string worldsheet, under σ → σ + 2π, on the universal cover of

SL(2, R) requires5 wR = wL = w for some integer w.

One may regard (25) as an action by an element of the loop group ŜL(2, R)×ŜL(2, R)

which is not continuously connected to the identity6. This particular symmetry of the

theory will also be useful in our analysis of the Hilbert space. Here we see that it

generates a new solution from an old solution. Furthermore, the currents (9) change

in the following way

J3
R = J̃3

R +
k

2
w, J±

R = J̃±
R e

∓iwx+

(27)

5If the target space is the single cover of SL(2, R), wR and wL can be different. In this case
(wR − wL) gives the winding number along the closed timelike curve on SL(2, R).

6The loop group ŜL(2, R) has such an element since π1(SL(2, R)) = Z. Therefore, in the model
whose the target space is the single cover of SL(2, R), the full symmetry group of the model is the
loop group of SL(2, R) × SL(2, R) and its connected components are parametrized by Z × Z. In
this paper, we are studying the model for the universal cover of SL(2, R). In this case, some of these
elements do not act properly on the field space, generating worldsheets which close only modulo time
translation. However the ones parametrized by the diagonal Z are still symmetry of the model. The
diagonal Z parameterizes the spectral flow operation performed simultaneously for both the left and
right movers.
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and a similar expression for Ja
L. Or, in terms of the Fourier modes,

J3
n = J̃3

n +
k

2
wδn,0, J±

n = J̃±
n∓w. (28)

This means that the stress tensor will change to

TAdS
++ = T̃AdS

++ − wJ̃3 − k

4
w2. (29)

In the CFT literature, this operation is known as the spectral flow.

Let us study what happens if we act with this symmetry on the solutions correspond-

ing to geodesics, (18) and (21). These solutions depend only on the worldsheet time

coordinate τ , and the spectral flow (26) with w = wR = wL introduces σ dependence

as
t = t0(τ) + wτ

ρ = ρ0(τ)

φ = φ0(τ) + wσ.

(30)

Here (t0, ρ0, φ0) represents the original geodesic solution. So what the spectral flow

does is to stretch the geodesic solution in the t-direction (by adding wτ) and rotates

it around w-times around the center ρ = 0 of AdS3 (by adding wσ). It is clear that

the resulting solution describes a circular string, winding w-times around the center

of AdS3. Since the spectral flow changes the energy-momentum tensor, we need to

impose the physical state condition TAdS
±± + T other

±± = 0 with respect to the new energy-

momentum tensor (29).

2.3 Short strings as spectral flow of timelike geodesics

A timelike geodesic in AdS3 makes a periodic trajectory as shown in Figure 1, approach-

ing the boundary of AdS3, then coming back to the center and so on. In particular,

when V = U−1 in (18), the geodesic periodically passes through the center ρ = 0 of

AdS3, with the period 2π in the t-coordinate. The spectral flow,

t→ t+ wτ, φ→ φ+ wσ

stretches the geodesic in the time direction and rotate it around the center ρ = 0; it

is pictorially clear that the resulting solution describes a circular string which repeats

expansion and contraction. This is shown shown in Figure 3 in the case of w = 1.

Assuming T other
±± = h as in the case of geodesics, the Virasoro constraint for the solution

is

T total
++ = T̃AdS

++ − wJ̃3 − k

4
w2 + T other

++ = 0. (31)

8



t

ρ = 8

ρ = ρ0

Figure 3: A classical solution obtained by the spectral flow of a timelike geodesic. The
solution repeats expansion and contraction. The maximum size of the string is ρ = ρ0.

Since

T̃AdS
++ = −k

4
α2

for the timelike geodesic, we find

J3
0 = J̃3

0 +
k

2
w =

k

4
w +

1

w

(
−k

4
α2 + h

)
. (32)

The spacetime energy E of the string is given by E = 2J3
0 , and is bounded above as

E =
k

2
w +

1

w

(
−kα2 + 2h

)
<
k

2
w +

2h

w
. (33)

It is not difficult to find an explicit form of the solution. When V = U−1 in (18),

without loss of generality, we can set7 U = V −1 = e
1
2
ρ0σ3 . The solution8 obtained by

the spectral flow of (18) is then

eiφ sinh ρ = ieiwσ sinh ρ0 sinατ

tan t =
tanwτ + tanατ/ cosh ρ0

1 − tanwτ tanατ/ cosh ρ0
.

(34)

7A different choice of U = V −1 simply results in shift of φ in the solution.
8We have been informed that a similar classical solution has also been studied in [19, 20].
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The currents of this solution are

J3
R =

k

2
(α cosh ρ0 + w)

J±
R = ±ik

2
α sinh ρ0e

∓iwx+

,

(35)

and similarly for JL. Comparing this with (32), we find

α = α± = −w cosh ρ0 ±
√

w2 sinh2 ρ0 +
4h

k
. (36)

If we choose the branch α = α+, the spacetime energy E of the solution is positive and

is given by

E = 2J3
0 = 2J̄3

0 = k


cosh ρ0

√
4h

k
+ w2 sinh2 ρ0 − w sinh2 ρ0


 . (37)

There are several interesting features of this formula for the energy E. Except for

the case of h = kw2/4, the energy is a monotonically increasing function of ρ0, which

approaches E → kw/2 + 2h/w as ρ0 → ∞. One may view that the solution describe a

bound state trapped inside of AdS3. At the exceptional value of h = kw2/4, we have

α+ = 0 and the energy of the solution becomes E = kw, completely independent of

the size ρ0 of the string. The solution in this case is

ρ = ρ0, t = wτ, φ = wσ, (38)

and represents a string staying at the fixed radius ρ = ρ0, neither contracting nor

expanding. The fact that we have such a solution at any radius ρ0 means that the

string becomes marginally unstable in AdS3.

Now let us turn to the case when U 6= V −1, or to be more precise, when UV does

not commute with T 3 = − i
2
σ2. (When UV commutes with T 3, one can shift the value

of τ to set U = V −1.) In this case, the geodesic does not necessarily pass through the

center of AdS3. Therefore the circular string obtained by its spectral flow does not

collapse to a point. Since

J̃a
LT

∗a =
k

2
αUT 3U−1, J̃a

RT
a =

k

2
αV −1T 3V, (39)

J̃3
L 6= J̃3

R unless UV commutes with T 3 = − i
2
σ2, and the spacetime angular momentum

ℓ = J3
R − J3

L = J̃3
R − J̃3

L is nonzero. Thus one may view that the circular string is kept

from completely collapsing by the centrifugal force. Since TAdS
++ −TAdS

−− = −w(J̃3
R− J̃3

L),

the Virasoro constraint T total
±± = 0 requires that the left and right conformal weights

(hL, hR) of the internal part should be different and that hR − hL = wℓ.

10



t

Figure 4: A long string solution obtained by the spectral flow of a spacelike geodesic.
The long string comes from the boundary of AdS3, collapse to a point and then expands
away to the boundary of AdS3 again.

2.4 Long strings as spectral flow of spacelike geodesics

We have seen in (33) that the spacetime energy E of the solution given by the spectral

flow of the timelike geodesic is bounded above as E < kw/2+2h/w. What will happen

if we raise the energy above this value? To understand this, let us look at the spectral

flow of the spacelike geodesic. Since T̃AdS
++ = +kα2/2 for the spacelike geodesic, the

Virasoro constraint (31) gives

J3
0 = J̃3

0 +
k

2
w =

k

4
w +

1

w

(
k

2
α2 + h

)
, (40)

and the spacetime energy is now bounded below,

E = 2J3
0 >

k

2
w +

2h

w
. (41)

As an example, let us consider the straight line cutting the spacelike section t = 0

diagonally (23). The spectral flow with w of this solution is

t = wτ, ρeiφ = ατeiwσ, (42)

namely

ρ =
α

w
|t|. (43)
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The solution starts in the infinite past t = −∞ as a circular string of an infinite radius

located at the boundary of AdS3. The string then collapse, shrinks to a point at t = 0,

and expand away toward the boundary of AdS3 as t → +∞. More generally, if we

choose U = V −1 = e−
1
2
ρ0σ1 , the spectral flow of the geodesic (21) gives

eiφ sinh ρ = eiwσ cosh ρ0 sinhατ

tan t =
tanwτ + tanhατ sinh ρ0

1 − tanwτ tanhατ sinh ρ0

.
(44)

This solution, which we call a long string, is depicted in Figure 4.

The Virasoro constraint T total
++ = 0 for the long string (44) is

TAdS
++ + T other

++ =
k

4

(
α2 − 2αw sinh ρ0 − w2

)
+ h = 0, (45)

with the solutions

α = α± = w sinh ρ0 ∓
√

w2 cosh2 ρ0 −
4h

k
. (46)

The spacetime energy E of these solutions are

E = 2J2
0 = 2J̄3

0 = k


w cosh2 ρ0 ∓ sinh ρ0

√

w2 cosh2 ρ0 −
4h

k


 . (47)

At the critical value h = kw2/4, we have α+ = 0 and the energy for this solution

becomes E = kw. At this point, the long string solution (44) coincides with (38).

Thus we see that, as we increase the value of h to h = kw2/4, the short string solution

(34) can turn into the long string solution (44) and escape to infinity.

As explained in [11, 12], a string that winds in AdS3 close to the boundary has

finite energy because there is a balance between two large forces. One is the string

tension that wants to make the string contract and the other is the NS-NS B field

which wants to make the string expand. These forces cancel almost precisely near the

boundary and only a finite energy piece is left. The threshold energy for the long string

computed in [11, 12] is kw/4, in agreement with (41) when h = 0. These strings can

have some momentum in the radial direction and that is a degree of freedom α that

we saw explicitly above. One may view the long string as a scattering state, while the

previous solution (34) is like a bound state trapped inside of AdS3.

In general, if UV commutes with T 3 = − i
2
σ2, the long string collapses to a point once

in its lifetime. If UV does not commute with T 3, the angular momentum ℓ = J3
R−J3

L of

the solution does not vanish and the centrifugal force keeps the string from collapsing

completely. In this case, the Virasoro constraint T total
±± = 0 requires hR − hL = wℓ for

the conformal weights of the internal sector.
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For the long strings, one can define a notion of the S-matrix. In the infinite past,

the size of the long string is infinite but its energy is finite. Therefore the interactions

between them are expected to be negligible, and one can define asymptotic states

consisting of long strings. The strings then approach the center of AdS3 and are

scattered back to the boundary. In this process, the winding number could in principle

change.

3 Semi-classical analysis

In studying the classical solutions, we were naively identifying the winding number w

as associated to the cycle φ → φ + 2π. But since this cycle is contractible in AdS3,

we should be careful about what we mean by the integer w. The winding number is

well-defined when the string is close to the boundary, so we expect that long strings

close to the boundary have definite winding numbers. On the other hand, when the

string collapses to a point, as shown in Figures 3 and 4, the winding number is not

well-defined. Therefore, if we quantize the string, it is possible to have a process in

which the winding number changes. There is however a sense in which string states

are characterized by some integer w.

In order to clarify the meaning of w when the string can collapse, let us look at the

Nambu action

S =
∫
dt
dσ

2π

[√
detgind −Btφ∂σφ

]
(48)

where gind is the induced metric on the worldsheet, and Btφ is the NS-NS B-field. We

have chosen the static gauge in the time direction t = τ . We assume that initially

we have a state with ρ = 0, and we want to analyze small perturbations. Since the

coordinate φ is not well-defined, it is more convenient to use

X1 + iX2 = ρeiφ. (49)

Let us compute the components of the induced metric gind. To be specific, we consider

the case when the target space AdS3 × S3 × T 4, and consider a string winding around

a cycle on T 4. By expanding in the quadratic order in ρ, we find

gind,00 = k
[
−(1 + ρ2) + ∂0X

a∂0X
a
]
+ ∂0Y

i∂0Y
i

gind,01 = k∂0X
a∂1X

a + ∂0Y
i∂1Y

i

gind,11 = k∂1X
a∂1X

a + ∂1Y
i∂1Y

i, (a = 1, 2)

(50)

where Y i’s are coordinates on T 4. For simplicity, we consider purely winding modes

on T 4, so that only ∂1Y
i is nonzero. For these states, the conformal weight h is given
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by9

4h =
∮ dσ

2π
Gij∂1Y

i∂1Y
j (51)

Substituting (50) and (51) into the action and expanding to the quadratic order in ρ,

we find

S =
√

4kh
∫
dσ2


1 − 1

2
(∂0X

a)2 +
1

2

k

4h


∂1X

a + ǫab

√
4h

k
Xb




2

+ · · ·




=
√

4kh
∫
dσ2


1 − 1

2
|∂0Φ|2 +

1

2

k

4h

∣∣∣∣∣∣


∂1 − i

√
4h

k


Φ

∣∣∣∣∣∣

2

+ · · ·


 ,

(52)

where Φ = X1 + iX2.

The action (52) is the one for a massless charged scalar field on R×S1 coupled to a

constant gauge field A =
√

4h/k around S1. As we vary A, we observe the well-know

phenomenon of the spectral asymmetry. Let us first assume that A is not an integer. A

general solution to the equation of motion derived from (52), requiring the periodicity

in σ, is

Φ ∼
∞∑

n=−∞

(
a†ne

i(n−A)(τ̃+σ) + bne
−i(n−A)(τ̃−σ)

) eiAσ

n−A
, (53)

where A =
√

4h/k and τ̃ = τ/A. Upon quantization, the commutation relations are

given (modulo a positive constant factor) by

[an, a
†
m] = (n−A)δn,m, [bn, b

†
m] = (n−A)δn,m. (54)

Notice that the sign in the right hand side of (54) determines whether an or a†n should

be regarded as the annihilation operator. Thus, assuming that the Hilbert space is

positive definite, the vacuum state is defined by

an|0〉 = bn|0〉 = 0, (n > A)

a†n|0〉 = b†n|0〉 = 0, (n < A).
(55)

For Φ = ρeiφ given by (53) and t = Aτ̃ , we find

J+
R = k

(
e−it∂+Φ∗ − Φ∗∂+e

−it
)
∼ −ik

∑

n

ane
−in(τ̃+σ)

J−
R = k

(
eit∂+Φ − Φ∂+e

it
)
∼ ik

∑

n

a†ne
in(τ̃+σ),

(56)

9One factor of 2 comes from the fact that this includes left and right movers and the other from
the fact that the expression for the energy involves 1/2Y ′2.
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and similarly for J±
L . Therefore J+

n = −ikan and J−
n = ika†−n. The vacuum state |0〉

defined by (55) then obeys

J+
n |0〉 = 0 (n > A), J−

n |0〉 = 0 (n > −A). (57)

Thus the vacuum state |0〉 is not in a regular highest weight representation of the

current algebra ŜL(2, R). If we set

J±
n = J̃±

n∓w (58)

with the integer w defined by

w < A < w + 1, (59)

then |0〉 obeys the regular highest weight condition with respect to J̃±
n ,

J̃+
n |0〉 = 0 (n ≥ 1), J̃−

n |0〉 = 0 (n ≥ 0) (60)

The change of the basis (58) is nothing but the spectral flow (28) discussed earlier, so

we can identify w as the amount of spectral flow needed to transform the string state

into a string state which obeys the regular conditions (60). We have found that, for a

given value of h, there is a unique integer of w associated to the string state. As we

vary the conformal weight h, A =
√

4h/k will become an integer. At that point, one

of the modes of the field Φ will have a vanishing potential. In fact we can check that

classically this potential is completely flat. Giving an expectation value to that mode,

we find configurations as in (38). Corresponding to various values of its momentum

in the radial direction, we have a continuum of states. So, at this value of h, we do

not have a normalizable ground state; instead we have a continuum of states which

are δ-function normalizable. If we continue to increase h, we find again normalizable

states, but they are labeled by a new integer (w + 1). Notice that w is not directly

related to the physical winding of the string. In fact by exciting a coherent state of the

oscillators an or bn we can find string states that look like expanding and collapsing

strings with winding number n around the origin.

One of the puzzles we raised in the introduction was what happens when we increase

the internal conformal weight h of the string beyond the upper bound implied by the

restriction j < k/2 on the SL(2, R) spin j due to the no-ghost theorem. In this section,

we saw a semi-classical version of the puzzle and its resolution. When h reaches the

bound, we find that the state can become a long string with no cost in energy. Above

the bound, we should consider a Fock space with a different bose sea level. In the fully

quantum description of the model given below, we will find a similar situation but with

minor corrections.
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4 Quantum string in AdS3

The Hilbert space of the WZW model is a sum of products of representations of the

left and the right-moving current algebras generated by

Ja
L =

∞∑

n=−∞

Ja
ne

−inx−

, Ja
R =

∞∑

n=−∞

J̄a
ne

−inx+

, (61)

with a = 3,±, obeying the commutation relations

[J3
n, J

3
m] = −k

2
nδn+m,0

[J3
n, J

±
m] = ±J±

n+m

[J+
n , J

−
m] = −2J3

n+m + knδn+m,0,

(62)

and the same for J̄a
n . We denote the current algebra by ŜLk(2, R). The Virasoro

generator Ln are defined by

L0 =
1

k − 2

[
1

2
(J+

0 J
−
0 + J−

0 J
+
0 ) − (J3

0 )2 +
∞∑

m=1

(J+
−mJ

−
m + J−

−mJ
+
m − 2J3

−mJ
3
m)

]

Ln 6=0 =
1

k − 2

∞∑

m=1

(J+
n−mJ

−
m + J−

n−mJ
+
m − 2J3

n−mJ
3
m)

(63)

and obey the commutation relation

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0, (64)

where the central charge c is given by

c =
3k

k − 2
. (65)

We will find that the Hilbert space of the WZW model consists of sub-sectors pa-

rameterized by integer w, labeling the amount of spectral flow in a sense to be made

precise below. We then formulate our proposal on how the complete Hilbert space

of the WZW model is decomposed into representations of the current algebras and

provide evidences for the proposal.

States in a representation of the current algebra are labeled by eigenvalues of L0

and J3
0 . Since the kinetic term of the WZW model based on SL(2, R) has an indefinite

signature, it is possible that the Hilbert space of the model contains states with negative

eigenvalues of L0 as well as states with negative norms, and indeed both types of states

appear as we will see below. For the moment, we will consider a representation in which

eigenvalues of L0 is bounded below. We call them positive energy representations, or
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unflowed representations. Since the action of J3,±
n with n ≥ 1 on a state lowers the

eigenvalue of L0 by n, there has to be a set of states which are annihilated by them.

We will call such states the primary states of the positive energy representation. All

other states in the representation are obtained by acting J3,±
−n (n ≥ 1) on the primary

states. The ground states make a representation of SL(2, R) generated by J3,±
0 . So let

us review irreducible representations of SL(2, R).

4.1 Representations of the zero modes

We expect that physical states of a string in AdS3 have positive norms. Since J3,±
0 com-

mute with the Virasoro constraints, physical spectrum of the string must be in unitary

representations of SL(2, R). Most of the mathematical references on representation

theory of SL(2, R) deal with the case with compact time10; we are however interested

in the case with non-compact time. A clear analysis from the algebraic point of view

is presented in [22], which we now summarize with some minor changes is notation.

There are the following five types of unitary representations. All the representations

are parameterized by j, which is related to the second Casimir c2 = 1
2
(J+

0 J
−
0 +J−

0 J
+
0 )−

(J3
0 )2 as c2 = −j(j − 1).

(1) Principal discrete representations (lowest weight):

A representation of this type is realized in the Hilbert space

D+
j = {|j;m〉 : m = j, j + 1, j + 2, · · ·},

where |j; j〉 is annihilated by J−
0 and |j;m〉 is an eigenstate of J3

0 with J3
0 = m. The

representation is unitarity if j is real and j > 0. For representations of the group

SL(2, R), j is restricted to be a half of integer. Since we are considering the universal

cover of SL(2, R), j can be any positive real number.

(2) Principal discrete representations (highest weight):

A charge conjugation of (1). A representation of this type is realized in the Hilbert

space

D−
j = {|j;m〉 : m = −j, − j − 1, − j − 2, · · ·},

where |j; j〉 is annihilated by J+
0 and |j;m〉 is an eigenstate of J3

0 with J3
0 = m. The

representation is unitary if j is real and j > 0.

(3) Principal continuous representations:

A representation of this type is realized in the Hilbert space of

Cα
j = {|j, α;m〉 : m = α, α± 1, α± 2, · · ·},

10For a review of representations of SL(2, R), see for example [21].
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where |j, α;m〉 is an eigenstate of J3
0 with J3

0 = m. Without loss of generality, we can

restrict 0 ≤ α < 1. The representation is unitary if j = 1/2 + is and s is real11.

(4) Complementary representations:

A representation of this type is realized in the Hilbert space of

Eα
j = {|j, α;m〉 : m = α, α± 1, α± 2, · · ·},

where |j, α;m〉 is an eigenstate of J3
0 with J3

0 = m. Without loss of generality, we can

restrict 0 ≤ α < 1. The representation is unitary if j is real, with 1/2 < j < 1 and

j − 1/2 < |α− 1/2|.
(5) Identity representation:

This is the trivial representation with j = 0.

The analysis that led to the above representation was completely algebraic and in

a particular physical system we can have only a subset of all possible representations.

Which of these representations appear in the Hilbert space of the WZW model? As

the first approximation, let us consider the k → ∞ limit. If we expand around a

short string solutions, i.e. oscillations near geodesics in AdS3, the WZW model in this

limit reduces to the quantum mechanics on AdS3. The Hilbert space of the quantum

mechanical model is the space of square-integrable12 functions L2(AdS3) on AdS3. The

isometry of AdS3 is SL(2, R) × SL(2, R), and one can decompose L2(AdS3) into its

unitary representations. It is convenient to choose the basis of the Hilbert space in

the following way. For each representation R, one can define a function on AdS3 by

Fm,m̄(g) = 〈m|g|m̄〉 where g ∈ AdS3, i.e. universal cover of SL(2, R), and |m〉 is an

eigenstate of J3
0 with J3

0 = m. Thus, for a given representation H of SL(2, R), the

function Fm,m̄(g) on AdS3 is in the tensor product of the representations R × R for

the isometry group SL(2, R) × SL(2, R).

For a discrete representation D±
j , the wave-function f(ρ) behaves as f(ρ) ∼ e−2jρ

for large ρ. Thus φ ∈ L2(AdS3) if j > 1/2. Notice that in the range 0 < j < 1

we have two representations with the same value of the Casimir but only one is in

L2(AdS3), the one with 1/2 < j < 1. As explained in [23], one could modify the norm

so that the second solution with 0 < j < 1/2 becomes normalizable. This modification

of the norm is j-dependent. Similarly, supplementary series representations need a j-

dependent modification to the norm to render them normalizable [21]. Therefore these

representations would appear in non-standard quantizations of geodesics, quantizations

which do not use the L2 norm onAdS3. In this paper, we will only consider the standard

11Strictly speaking the representation with j = 1/2, α = 1/2 is reducible as the sum of a highest
weight and a lowest weight representation with j = 1/2.

12Since AdS3 is non-compact, we consider square-integrability in the delta-function sense.
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quantization using the L2 norm for the zero modes13. Wave-functions in Cα
j=1/2+is

are also delta-function normalizable with respect to the L2 norm. It is known that

Cα
j=1/2+is × Cα

j=1/2+is and D±
j ×D±

j with j > 1/2 form the complete basis of L2(AdS3).

For discrete lowest weight representations, the second Casimir is bounded above as

c2 = −j(j − 1) ≤ 1/4. This corresponds to the well-known Breitenlohner-Freedman

bound (mass)2 ≥ −1/4 for the Klein-Gordon equation. For the principal continuous

representation Cα
j with j = 1/2+ is, the second Casimir is c2 = 1/4+ s2. Therefore an

existence of such a particle would violate the Breitenlohner-Freedman bound. In the

bosonic string theory, the only physical state of this type is the tachyon. In a pertur-

batively stable string theory, such particle states should be excluded from its physical

spectrum. On the other hand, the continuous representations appear in L2(AdS3)

and they are expected to be part of the Hilbert space of the WZW model before the

Virasoro constraint is imposed.

4.2 Representations of the current algebra and no-ghost the-
orem

Given a unitary representation H of SL(2, R), one can construct a representation of

ŜL(2, R) by regarding H as its primary states annihilated by J3,±
n≥1. The full representa-

tion space is generated by acting J3,±
n≤−1 on H. Following the discussion in the previous

subsection, we consider the cases when H = Cα
j=1/2+is and D±

j with j > 1/2. We denote

by D̂±
j and Ĉα

j the representations of the full current algebra built on the corresponding

representations of the zero modes. In Figure 5, we have shown the weight diagram of

the positive energy representation D̂+
j .

A representation of ŜLk(2, R) in general contains states with negative norms. In

order for a string theory on AdS3 to be consistent, one should be able to remove these

negative norm states by imposing the Virasoro constraint,

(Ln + Ln − δn,0)|physical〉 = 0, n ≥ 0, (66)

on the Hilbert space for a single string state, where Ln is the Virasoro generator of

the SL(2, R) WZW model and Ln for the sigma-model on M. It has been shown

that this no-ghost theorem holds for states in Ĉα
j=1/2+is or D̂±

j with 0 < j < k/2

[2, 3, 6, 7, 8, 9, 22].

The no-ghost theorem is proved by first showing that all the solutions to the Vi-

rasoro constraint (66) can be expressed, modulo null states, as states in the coset

13Notice however, that even if the primary states have j > 1/2, we could have states with smaller
values of j0 for the zero mode SL(2, R) among the descendents, for example J−

−1
|j〉 with 1 < j < 3/2,

has j0 = j − 1 < 1/2.
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J0
3

L 0

J  = j3
0

j(j-1)
k-2-L =0

Figure 5: Weight diagram the representation D̂+
j , whose the primary states form a

discrete lowest weight representation D+
j .

SL(2, R)/U(1) obeying

J3
n|ψ〉 = 0 , n ≥ 1. (67)

This statement is true for Ĉα
1/2+is and D̂±

j with 0 < j < k/2, if the total central charge

of the Virasoro generator Ln + Ln is 26 [2, 3, 4, 6, 7, 8, 9] 14. We review the proof

of this statement in the appendix A.1. The second step is to show that the condition

(67) removes all negative norm states. This was shown in [22] for the same class of

representations.

The no-ghost theorem suggests that the spectrum of discrete representations has to

be truncated for j < k/2. As we will see, this truncation is closely related to the

existence of the long string states.

4.3 Spectral flow and the long string

The classical and semi-classical results discussed above indicate that, beyond positive

energy representations that we have discussed so far, we have to include others related

by spectral flow. To define a quantum version of the spectral flow, we note that, for

any integer w, the transformation J3,±
n → J̃3,±

n given by

J̃3
n = J3

n − k

2
wδn,0, J̃+

n = J+
n+w, J̃−

n = J−
n−w, (68)

14We also assume k > 2.
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preserves the commutation relations (62). The Virasoro generators L̃n, which have the

standard Sugawara form in terms of J̃a
n, are different from Ln. They are given by

L̃n = Ln + wJ3
n − k

4
w2δn,0. (69)

Of course, they obey the Virasoro algebra with the same central charge c. This is the

same formula as saw in the classical counterpart (29) of the spectral flow.

-j-k/4k-2
j(j-1)

~

L  =-0

J 3
0

L0L0

J
~

0
3

J  =j+k/23
0

~

~

~
~

Figure 6: Weight diagram of the representation D̂+,w=1

j̃
, which is the spectral flow of

the diagram 5 with w = 1. The worldsheet energy L0 of this representation is not
bounded below, but the spacetime energy, J3

0 , is bounded below for states obeying the
Virasoro constraint L0 = 1.

The change of the basis (68) maps one representation into another, and this is called

the spectral flow. In the case of a compact group such as SU(2), the spectral flow maps

a positive energy representation of the current algebra into another positive energy

representation. An analogous transformation in the case of the N = 2 superconformal

algebra in two dimensions has been used to construct the spacetime supercharges for

superstring.

In the case of SL(2, R), the spectral flow generates a new class of representations. As

shown in Figure 6, the spectral flow with w = 1 maps the lowest weight representation
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J 3
0

J  =3
0

J
~3

0

L = 0 - j(j-1)
k-2

~
L0 L0

-(k/2-j)
~

Figure 7: The spectral flow of the diagram 5 with w = −1. D̂+
j̃

is mapped to D̂+,w=−1

j̃
=

D̂−
j with j = k/2−j̃. Since j̃ > 1/2, the resulting D̂−

j obeys j < (k−1)/2. In particular,
the unitarity bound j < k/2 required by the no-ghost theorem is satisfied.

D̂+
j̃

to a representation in which L0 is not bounded below. The appearance of negative

energy states is not too surprising since the kinetic term of the SL(2, R) model is not

positive definite. In general, a spectral flow of D̂+
j̃

with w ≥ 1 or w ≤ −2 gives a

new representation in which L0 is not bounded below. Similarly, the spectral flow of

Ĉα
j=1/2+is with w 6= 0 gives a representation in which L0 is not bounded below. We

denote the resulting representations by D̂±,w

j̃
and Ĉα,w

j̃
, where j̃ labels the SL(2, R)

spin before the spectral flow.

These representations obtained by the spectral flow also contain negative norm

states. In Appendix A.2, we generalize the proof of the no-ghost theorem and show that

the Virasoro constraints indeed remove all negative norm states in the representations

Ĉα,w
j=1/2+is and D̂±,w

j̃
with j̃ < k/2, for any integer w.

The only case where we get a representation with L0 bounded below by the spectral

flow is D̂±
j with w = ∓1. In this case, the representation is mapped to another

positive energy representation D̂±,w=∓1

j̃
= D̂∓

k/2−j̃
. Note that, if we start with the
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representation with j̃ > 1/2, the representation one gets after the spectral flow satisfies

j = k/2−j̃ < (k−1)/2. Conversely, if there were a representation D̂±
j with j > (k−1)/2

in the Hilbert space, the spectral flow would generate a representation D̂∓
j with j < 1/2,

in contradiction with the standard harmonic analysis of the zero modes in section 4.1.

Therefore, if we assume that the spectral flow is a symmetry of the WZW model, the

discrete representations D̂±
j appearing in the Hilbert space are automatically restricted

to be in 1/2 < j < (k − 1)/2. In particular, the spectrum of j is truncated below the

unitarity bound j < k/2 required by the no-ghost theorem. This further restriction on

j was discussed in a related context by [24].

4.4 Physical spectrum

Let us consider first the spectrum for strings with w = 0. This is fairly standard. We

start from an arbitrary descendent at level N in the current algebra and some operator

of the internal CFT with conformal weight h. The L0 constraint reads

(L0 − 1)|j,m,N, h〉 = 0 =⇒ −j(j − 1)

k − 2
+N + h− 1 = 0 (70)

If we demand that 1/2 ≤ j ≤ (k − 1)/2, this equation will have a solution as long as

N + h is within the range

0 ≤ N + h− 1 +
1

4(k − 2)
≤ (k − 2)

4
(71)

If we allow j to go all the way to k/2 we get k/4 on the right hand side of (71).

To analyze physical states of strings with w 6= 0, we start with a positive energy

representation D̂+
j̃
. After the spectral flow (68), a primary state |j̃, m̃〉 of D̂+

j̃
, as a

state of D̂+,w

j̃
, obeys

J+
n+w|j̃, m̃〉 = 0, J−

n−w|j̃, m̃〉 = 0, J3
n|j̃, m̃〉 = 0, n ≥ 1

J3
0 |j̃, m̃〉 =

(
k

2
w + m̃

)
|j̃, m̃〉.

(72)

Let us look for physical states with respect to the Virasoro generator Ln. From (72),

we find the Virasoro constraints are

(L0 − 1)|j̃, m̃〉 =

(
− j̃(j̃ − 1)

k − 2
− wm̃− k

4
w2 + Ñ + h− 1

)
|j̃, m̃, Ñ , h〉 = 0

Ln|j̃, m̃〉 = (L̃n − wJ̃3
n)|j̃, m̃〉 = 0, n ≥ 1.

(73)

where h is the contribution to the conformal weight from the internal CFT and Ñ is

the level inside the current algebra before we take the spectral flow. The state obeys
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the physical state conditions provided

m̃ = −k
4
w +

1

w

(
− j̃(j̃ − 1)

(k − 2)
+ Ñ + h− 1

)
. (74)

The spacetime energy of this state measured by J3
0 is then

J3
0 = m̃+

k

2
w =

k

4
w +

1

w

(
− j̃(j̃ − 1)

(k − 2)
+ Ñ + h− 1

)
. (75)

This is the quantum version of the classical formula (32), with the replacement

k

4
α2 → j̃(j̃ − 1)

k − 2
+ 1.

Notice that m̃ = j̃ + q where q is some integer, which could be negative15. Therefore

the physical state condition becomes

j̃ =
1

2
− k − 2

2
w +

√
1

4
+ (k − 2)

(
h− 1 +Nw − 1

2
w(w + 1)

)
. (76)

Here

Nw = Ñ − wq (77)

is the level of the current algebra after the spectral flow by the amount w. Notice that

the equation for j̃ is invariant under Ñ → Ñ ± w, q → q ± 1. This is reflecting the

fact that J±
0 = J̃±

∓w commute with the Virasoro constraints and generate the spacetime

SL(2, R) multiplets. In particular, we see that the spacetime SL(2, R) representations

that we get are lowest energy representations, since repeated action of J−
0 = J̃−

w will

eventually annihilate the state. In fact, it is shown in Appendix A.2 that the only

physical state with zero spacetime energy, J3
0 = 0, is the state J−

−1|j = 1〉, and its

complex conjugate. This physical state corresponds to the dilaton field in AdS3, which

played an important role in the analysis of the spacetime Virasoro algebra in [25].

All other states (except the tachyon with w = 0) have nonzero energy, and form

highest/lowest weight representations of SL(2, R) spacetime algebra. The negative

energy ones are the complex conjugates of the positive energy ones.

By solving the on-shell condition (76) for j̃ > 0 and substituting it into (75), one

finds that the spacetime energy of the string is given by

E + ℓ

2
= J3

0 = q + w +
1

2
+

√
1

4
+ (k − 2)

(
h− 1 +Nw − 1

2
w(w + 1)

)
. (78)

15m̃ is the total J̃3 eigenvalue of the state so it can be lowered by applying J−

−n to the highest

weight state. So we have the constraint q ≥ −Ñ .
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Since both Nw and q are integers, the energy spectrum is discrete. This is reasonable

since we are considering the string trapped inside of AdS3. The constraint 1/2 < j̃ <

(k − 1)/2 translates into the inequality

k

4
w2 +

w

2
< Nw + h− 1 +

1

4(k − 2)
<
k

4
(w + 1)2 − w + 1

2
. (79)

This is the quantum version of the semi-classical formula (59). In fact, if we take

k, h ≫ Ñ , q, w, (79) reduces to (59). As in the semi-classical discussion, w is not

necessarily related to the physical winding number of the string. It is just an integer

labeling the type of representation that the string state is in.

The analysis for the representations coming from the continuous representations for

the zero modes is similar. If we do not spectral flow, the only state in the continuous

representation is the tachyon. If we do spectral flow, we get the equation (74), which

can be conveniently rewritten as

J3
0 = m̃+

wk

2
=
kw

4
+

1

w

(
1
4

+ s2

k − 2
+ Ñ + h− 1

)
(80)

For continuous representations w is labeling the physical winding of the string when it

approaches the boundary of AdS. In this case we do not get an equation like (76) since,

for continuous representations, m̃ is not related to j. Comparing with the classical

formula (40), we identify s as the momentum α/k of the long string along the radial

direction of AdS3. We clearly see that the energy of this state is above the threshold

to produce an excitation that will approach the boundary as a w-times wound string.

We can see that, whenever the value of h is such that it saturates the range (79),

we have a continuous representation with the same energy. This is clear for the lower

bound in the case of w = 0 since, for each state in the discrete representation with

j = 1/2, there is one in the continuous representation with the same values of L0 and

J3
0 . By the spectral flow, we see that the same is true for the lower bound in (79)

for any w. Indeed we can check explicitly that a state in the discrete representation

with parameters (h, w, q, Ñ) saturating the lower bound in (79) has the same spacetime

energy as a state in the continuous representation with parameters (h, w, s = 0, Ñ).

(The parameter α in the continuous representation is fixed by the value of J3
0 in (80).)

Similarly, if we have a state in a discrete representation saturating the upper bound

in (79), it has the same spacetime energy as a state in the continuous representation

with parameters (h, w + 1, s = 0, Ñ ′ = Ñ + q). Note that, since q ≥ −Ñ (see the

footnote in the previous page), we have Ñ ′ ≥ 0. In this case, to show that the two

states have the same energy, it is useful to identify the state in D+,w

j̃=j̃
as a state in

D−,w+1

ĵ=k/2−j̃
. Since j̃ → (k − 1)/2 corresponds to ĵ → 1/2 under this identification, we

can apply the above argument for the lower bound to show that we will find a state
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in the continuous representation. The shift Ñ ′ = Ñ + q comes from the fact that the

identification D+,w

j̃=j̃
= D−,w+1

ĵ=k/2−j̃
involves spectral flow one more time.

The above paragraph explains what happens as we change j̃ in a discrete represen-

tation and we make it equal to the upper or lower bound: a continuous representation

appears. Another question that one could ask is the following. Given a value of h,

what is the state with the lowest value of J3
0 that satisfies the physical state con-

ditions? Let us first look for the lowest energy state in the discrete representations

obeying the bound (79). Within this bound, one can show that ∂J3
0 (h, w, q, Ñ)/∂q ≥ 0

and ∂J3
0 (h, w, q = −Ñ , Ñ)/∂Ñ ≥ 0. Therefore, if we can set q = Ñ = 0, it will give

the lowest energy state in the discrete representations. This is possible if h is within

the range,
k

4
w2 +

w

2
< h− 1 +

1

4(k − 2)
<
k

4
(w + 1)2 − w + 1

2
. (81)

With some more work, one can show that, for h in this range, there isn’t any state in a

continuous representation whose energy is lower than that of the discrete representation

state with Ñ = q = 0. As we saw in the above paragraph, at the upper or lower bound

of (81), the energy of the discrete state (q = 0, Ñ = 0) coincides with that of the

continuous state with (s = 0, Ñ = 0). Outside this range (81), it is not possible to set

Ñ = q = 0, and the lowest energy state will be in a continuous representation. In our

semi-classical discussion in the last section, we found that the discrete representation

can decay into the continuous representation at h = kw2/4. Now we see that, in the

fully quantum description, the range over which a continuous representation has lower

energy has expanded from the point h = kw2/4 to a strip of width w:

k

4
w2 − w

2
< h− 1 +

1

4(k − 2)
<
k

4
w2 +

w

2
. (82)

So far we have restricted our attention to right-moving sectors of the Hilbert space.

Let us now discuss how the left and right movers are combined together. For the classi-

cal solution of the long string, the worldsheet periodicity requires that the spectral flow

has to be done simultaneously on both the left and right movers with the same amount.

If AdS3 were not the universal cover of SL(2, R) but its single cover, different amounts

of the left and the right spectral flows would have been allowed since the resulting

solution is periodic modulo the closed timelike curve of SL(2, R). It is straightforward

to identify the corresponding constraint in the quantum theory. Suppose we perform

the spectral flows by the amount wL and wR on the left and the right-movers. A state

with conformal weights (hL, hR) and the J3
0 charge (m̃L, m̃R) is mapped by this trans-

formation to a state with conformal weights (hL −wLm̃L − k
4
w2

L, hR −wRm̃W − k
4
w2

R),

according to (69). The worldsheet locality, which is the quantum counterpart of the

periodicity of the classical solution, requires that the conformal weights hL and hR
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differ only by an integer. If this is the case before spectral flow, the same requirement

after the flow implies

wLm̃L +
k

4
w2

L = wRm̃R +
k

4
w2

R (mod integer). (83)

For generic values of (m̃L, m̃R), the only solution to this constraint is wL = wR. In this

paper, we are considering only the universal cover of SL(2, R) as the target space of

the model. In this case, the spectrum of (m̃L, m̃R) is continuous, and only the left-right

symmetric spectral flow wL = wR is allowed.

Summary:

We propose that the spectrum of the SL(2, R) WZW model (for the universal cover

of SL(2, R)) contains the following two types of representations. First the spectral

flow of the continous representations, with the same amount of spectral flow on the

left and right, Ĉα,w
1/2+is,L ×Ĉα,w

1/2+is,R. Then the discrete representations D̂+,w

j̃,L
×D̂+,w

j̃,R
with

the same amount of spectral flow on the left and right and the same value of j̃, with

1/2 < j̃ < (k − 1)/2. In the string theory, these representations should be tensored

with the states of the internal CFT, and the Virasoro constraints should be imposed.

5 Scattering of long string

When a long string comes in from the boundary of AdS3 to the center, it will scatter

back to the boundary. In this process the winding number could in principle change. In

order to study the S-matrix between incoming and outgoing long strings, it is convenient

to perform the rotations to Euclidean signature spaces, both on the worldsheet and in

spacetime. Following the standard procedure, we define the hermiticity as is natural

in the Lorentzian theory. For this reason we still have the SL(2, R)L × SL(2, R)R

currents in the Euclidean theory. The relevant conformal field theory, whose target

space is the 3-dimensional hyperbolic space H3 = SL(2, C)/SU(2) has been studied in

[18, 26, 27, 28, 29, 25, 30].

5.1 Vertex operators

To compute the scattering amplitudes, we would like to find vertex operators for all

representations considered above. Spectral flow is realized in the vertex operator for-

malism in the following standard fashion [31]. We bosonize the J3 currents, introducing
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left and right moving chiral bosons16 through

J3
R = −i

√
k

2
∂φ(z) J3

L = −i
√
k

2
∂̄φ(z̄) (84)

A state with charge m under J3
R contains an exponential in φ(z) of the form eim

√
2
k
φ(z).

The other two currents therefore can be expressed as

J+
R = ψei

√
2
k
φ(z), J−

R = ψ†e−i
√

2
k
φ(z), (85)

and similarly for J±
L . A primary field Φjmm̄(z, z̄) of the current algebra can be expressed

as

Φjmm̄ = eim
√

2
k
φ(z)+im̄

√
2
k
φ(z̄)Ψjmm̄, (86)

where Ψjmm̄ carries no charges with respect to J3
R,L. In the case of the SU(2) model, the

field corresponding to Ψ is known as a parafermion. The parafermion for the SL(2, R)

model was studied in [32]. The conformal weights of the parafermion field Ψjmm̄ is

hΨ;jmm̄ = −j(j − 1)

k − 2
+
m2

k

h̄Ψ;jmm̄ = −j(j − 1)

k − 2
+
m̄2

k
.

(87)

In the discrete lowest weight representation, m, m̄ = j, j + 1, j + 2, · · ·. In particular,

when j = k/2, the field Ψj=k/2,m=m̄=k/2 has conformal weights h = h̄ = 0. Since the

parafermion field lives in the unitary conformal field theory it is natural to assume that

it is the identity operator17. Here we simply note that the operator

ei
√

k

2
(φ(z)+φ(z̄))

has the correct OPE for the primary field of spin j = k/2 with the SL(2, R) currents.

Using the parafermion notation, the operator obtained by the spectral flow by w

units is expressed as

Φw = ei(m̃+wk/2)
√

2
k
φ(z)+i( ˜̄m+wk/2)

√
2
k
φ(z̄)Ψjm̃ ˜̄m (88)

It is easy to see that the conformal weight is given by

L0 =
−j(j − 1)

k − 2
−mw + kw2/2 (89)

16Reflecting the hermiticity of the SL(2, R) model, the scalar field φ is hermitian, but with a wrong
sign for the two-point function 〈φ(z)φ(z′)〉 = log(z − z′).

17Recently we have learned that a similar argument has appeared in unpublished notes by A. B.
Zamolodchikov. We thank him for having his note available to us [33].
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5.2 Reflection coefficient

We will compute the amplitude, using the formulae obtained in [34, 35, 26, 33], in the

case that the winding number does not change.

The long string states are in the spectral flow of the continuum representation. The

corresponding vertex operators are

Φj
mm̄ =emφ(z)+m̄φ(z̄)Ψj

m̃ ˜̄mVhh̄(z, z̄) ,

m̃ = m− wk/2 , ˜̄m = m̄− wk/2 , j =
1

2
+ is

(90)

where Vhh̄ is an operator in the internal part with conformal weights (h, h̄). The

physical energy E and angular momentum ℓ of a state in AdS3 are given by

m =
1

2
(E + ℓ), m̄ =

1

2
(E − ℓ). (91)

The physical state constraint is (80) with Ñ = 0. This implies that

m̃ = −wk/4 +
1

w

[
1/4 + s2

k − 2
+ h− 1

]
(92)

Now we can now consider the two point function [26, 27, 33]

〈Φj
mm̄(z, z̄)Φj′

m′m̄′(z′, z̄′)〉 =
Γ(1/2 + is− m̃)Γ(1/2 + is + ˜̄m)Γ(−2is)Γ( 2is

k−2
)

Γ(1/2 − is− m̃)Γ(1/2 − is+ ˜̄m)Γ(2is)Γ(− 2is
k−2

)

× δ(s− s′)δN+N ′δ(E + E ′)

(93)

The z dependence is just 1/|z − z′|4 coming from the fact that the two operators have

weight (1,1). This is the reflection amplitude and the values of m̃, ˜̄m are determined

by (92)(notice that m is the physical energy, not m̃.).

As explained in [28] in this context, in string theory we have to integrate over z

and divide by the volume of SL(2, C). We can use SL(2, C) invariance to put z = 0,

z′ = ∞ in the correlator. The volume of the rest of SL(2, C) then gives
∫ d2z

|z|2
, which

cancels one of the delta-functions in (93). Notice that δ(s−s′)δ(E+E ′) = δ(s−s′)δ(0),

the volume of SL(2, C) cancels the δ(0) piece.

Now if we study the poles of (93), we find that they are located at 1/2+ is−m̃ = −q
with q = 0, 1, 2, · · ·. They come from the first Gamma-function. Taking this condition

together with (92) we find that

1/2 + is + q = m̃ = −wk/4 +
1

w

[
1/4 + s2

k − 2
+ h− 1

]
(94)
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and this equation is precisely the same as the usual mass shell equation for discrete

states if we take j̃ = 1/2 + is. There are similar poles from the second Gamma-

function. There are no poles coming from the third factor since they cancel extra poles

appearing in the other factors. Notice that the poles appearing in (94) satisfy precisely

the equation (76) for bound states in the representation D̂+,w

j̃
(with Ñ = 0). There is

however an important difference. In (76) the value of j̃ obeyed the condition

1

2
< j̃ <

k − 1

2
(95)

while we do not have such a condition in (94). It is interesting to note that if j̃ satisfies

(95) then the residue at the pole has the proper sign to be interpreted as coming from a

bound state. When j̃ = (k− 1)/2, i.e at the upper bound of (95), we find that there is

no pole. Moreover, immediately above that value, we have the wrong sign for the pole

residue. This might make us worry that the amplitude is not having the right analytic

structure. However, in order to have a one-to-one correspondence between poles of

the scattering amplitude and bound states, the potential has to decrease sufficiently

rapidly at the infinity [36], a condition that is not met in our case. In such a situation,

it is possible to have extra poles that do not correspond to physical states. We plan to

analyze the poles and their implications for physical states in a future publication.

5.3 Relation to the scattering off the two-dimensional black
hole

The coset of the SL(2, R) WZW by the U(1) generated by J3 gives a sigma-model whose

target space is the two-dimensional black hole with the Euclidean signature metric [37].

The geometry of the black hole is like a semi-infinite cigar with an asymptotic region in

the form of the cylinder R × S1. The dilaton field grows as one approaches the center

of the black hole, but it remains finite since the geometry is terminated at the tip of

the cigar. The string theory on SL(2, R)/U(1)×(time)×M is closely related to the

string theory on AdS3 × M since the physical state conditions for the latter implies

J3
n|physical〉 = 0 for n ≥ 1, as we show in Appendix A. Similarly the superstring theory

on AdS3 ×M is related to the Kazama-Suzuki coset SL(2, R)/U(1).

There is however difference between the zero mode sectors of the theories on AdS3

and on the two-dimensional black hole. In order to construct representations for

SL(2)/U(1), we can start from the representations of ŜL(2, R) that we described above

and impose the condition that J3
n>0 annihilate the state and that the total AdS3 energy

vanishes, J3
0,R +J3

0,L = m+m̄ = 0. In terms of the parafermion Ψjm̃ ˜̄m given in (86) and

(88), the condition is m̃ + ˜̄m = wk. The locality condition m − m̄ = n where n is an

integer implies that m̃− ˜̄m = n. These two quantization conditions are the ones in [38]

30



(see equation 3.6 of that paper). The SL(2)/U(1) theory has been studied recently in

connection with “little” string theories in [24, 39].

6 Conclusion

In this paper, we studied the physical spectrum of bosonic string theory in AdS3.

We proposed that the complete Hilbert space of the SL(2, R) WZW model consists

of the continuous representations and their spectral flow Ĉα,w
j=1/2+is × Ĉα,w

j=1/2+is, and

the discrete representations and their spectral flow D̂±,w
j × D̂±,w

j with the constraint

1/2 < j < (k − 1)/2. The sum over the spectral flow is required if we assume that

the Hilbert space realizes the full loop group of SL(2, R), including its topologically

non-trivial elements. We found that this proposal leads to the physical spectrum of

the string theory with the correct semi-classical limits.

In particular, we have solved the two puzzles which we mentioned in the introduction.

The no-ghost theorem for D̂±
j requires the constraint 0 < j < k/2. If we only had the

unflowed sector (with w = 0), it would imply the upper bound on allowed mass of string

states, which appears artificial. This was one of the puzzles. We have resolved this

puzzle by showing that the upper bound on the mass is removed if we include all the

spectral flowed sectors in the Hilbert space. Moreover we showed that the consistency

with the spectral flow and the standard harmonic analysis of the zero modes requires

the constraint 1/2 < j < (k − 1)/2, more stringent than the one required by the no-

ghost theorem. The constraint 1/2 < j < (k − 1)/2 is found to be consistent with the

locations of the poles in the reflection coefficient (with the correct sign for the pole

residues; see also [24]) and the modular invariance of the partition function.

Another puzzle was to identify states in the Hilbert space corresponding to the

long strings. We found that these states are in the spectral flow of the continuous

representations, Ĉα,w
j=1/2+is × Ĉα,w

j=1/2+is. The integer w, which parametrized the amount

of the spectral flow, is identified with the winding number of the long string stretched

closed the boundary of AdS3. The physical spectrum of the long strings obtained from

these representations agrees with the expectations from the semi-classical analysis in

[11, 12].

The resolutions of these puzzles removes the longstanding doubts about the con-

sistency of the model. Moreover it appears that the SL(2, R) WZW model is exactly

solvable, just as WZW models for compact groups, although its Hilbert space structure

is significantly different from those of the compact cases. We hope that further study

of the model will provide us more useful insignts into the AdS/CFT correspondence

and strings in curved spaces in general.
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A No-ghost theorems

In this appendix we would like to extend the proof of the no-ghost theorem to all

the representations considered above. We assume k > 2. The proof of the no-ghost

theorem for the standard lowest energy representations [2, 3, 4, 5, 6, 7, 8, 9, 22] involves

two parts. Part I consists of showing that a physical state can be chosen, up to a null

state, to be such that J3
n|ψ >= 0, for n ≥ 1. This first part uses 0 < j < k/2 for

the D±
j representations as well as c = 26 and the mass shell condition. This was

shown in [2, 3, 4, 5, 6, 7, 8, 9]. Part II consists in showing that any state that is

annihilated by J3
n>0 has non negative norm. This step also uses 0 < j < k/2 for the

D±
j representations. This was done in [22]. Here we will use the same strategy and

prove Part I for the all our representations. The no-ghost theorem then follows from

Part II.

We first review the proof of Part I for the representations with w = 0 and then we

do Part I for the w 6= 0 representations.

A.1 Proof of Part I for unflowed representations

Here we follow the proof in [2, 3, 6, 7, 9]. It has essentially three steps.

Step 1: The first step of the proof is to show that states of the form

L−n1L−n2 · · ·L−nN
J3
−m1

J3
−m2

· · ·J3
−mM

|f〉
n1 ≥ n2 ≥ · · · ≥ nN , m1 ≥ m2 ≥ · · · ≥ mM ,

with Ln|f〉 = J3
n|f〉 = 0 for n ≥ 1,

(96)

are linearly independent and that they form a complete basis of the Hilbert space.

The states |f〉 are constructed from states in the current algebra times some states

in an internal conformal field theory. This internal piece is assumed to be unitary.

This step involved separating the piece of Ln involving L(3) =: J3J3 :, defining L̂n =

Ln − L(3)
n . One can show that the states (96) are in one to one correspondence with

states of the form

L−n1L−n2 · · ·L−nN
J3
−m1

J3
−m2

· · ·J3
−mM

|f〉
n1 ≥ n2 ≥ · · · ≥ nN , m1 ≥ m2 ≥ · · · ≥ mM ,

(97)

Notice that the conditions (96) on |f〉 are the same as L̂n>0|f〉 = J3
n>0|f〉 = 0. It is

easier to show that (97) is a basis since now we can think of the CFT as a product

of a U(1) factor with the rest. The rest is a CFT with c = 25 and therefore the fact

that (97) is a basis reduces to showing that there are no null states in the Virasoro

descendents on a primary field. This will be true if the conformal weight of the rest is
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positive. This reduces to showing that c2/(k − 2) + m2/k + M > 0, where M is the

grade in the SL(2, R) piece. For the continuous representations, this is obvious since

c2 > 0. For lowest weight representations, this inequality can be shown by rewriting it

as
2j (k/2 − j)

k(k − 2)
+

2M

k

(
k

2
− j

)
+

2j

k
(−j +m+M) +

1

k
(j −m)2 > 0 (98)

We to use 0 < j < k/2 and also the fact that m ≥ j −M , which is true in general.

Notice that the m that appears here is the total J3
0 value, after we applied J±

−n any

number of times. Notice that in this step we did not use that the states were obeying

the mass shell condition, but we used 0 < j < k/2 and that c = 26.

Step 2: Here we show that a physical state can be chosen so that it involves no L−n

when written as (96).

A physical state can be written as a state with no L−n plus a spurious state. A

spurious state is a state with at least one L−n. Then we use the fact that, when

c = 26, Ln (n ≥ 1) acting on a spurious state which satisfies the L0 = 1 condition

leaves it as a spurious state [40, 41] . If Ln>0 acts on a state of the form (96) with no

L−n then it will not produce any L−n. Together with the fact that (96) is a basis this

implies that the part of the state with no L−n satisfies the physical state condition on

its own, and therefore the rest is a null state (a spurious physical state).

Step 3: We show that if the physical state |ψ〉 involves no L−n when written as in (96)

then J3
n|ψ〉 = 0.

Since there are no L−n’s in the physical state ψ this implies that L(3)
n ψ = 0 for n ≥ 1.

Then we try to show that the only states satisfying this will be states with J3
nψ = 0 for

n ≥ 1. This would be true if there are no null states in the L(3) Virasoro descendents

of the states |f〉 we considered above. If m 6= 0 then one can show that there is no

null state in the Virasoro descendents in the L(3) Virasoro descendents. There are two

states with m = 0 one is in the continuous representation, but the mass shell condition

automatically implies that N = 0 (there are no Ja
−n in this state) and therefore the

state has positive norm. The other is the state in the lowest weight representation

J−
−1|j = 1〉 (99)

(and of course its complex conjugate in the highest weight representation). This state

has positive norm. Note that m is the physical energy in AdS3 of the state in question.

Zero energy states, therefore imply that we have a normalizable zero mode. This is

the state corresponding to the identity operator in the spacetime boundary conformal

field theory, the state J̄JΦ1 of [25] which played an important role in the computation

of the spacetime Virasoro algebra.
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One can show, using the mass shell condition, that all other states have m 6= 0. The

mass shell condition is

−j(j − 1)

k − 2
+N + h′ − 1 = 0 (100)

where N is the grade in the SL(2, R) part and h′ is the conformal weight of the rest,

h′ ≥ 0. If 0 < j < 1 then m is nonzero because it can only change by an integer by the

action of the J±
n currents. If j = 1 with N = 1 and h′ = 0 we find (99)and states with

positive m.

Consider now j > 1. If we had m = 0 then we also need N ≥ j, j ≥ 2 (since m = 0

only if j is integer) and furthermore

−j(j − 1)

k − 2
+N − 1 ≥ (j − 1)(k − 2 − j)

k − 2
> 0 (101)

provided j ≤ k/2. Since j has to be at least 2, then k > 4 and therefore k−2−k/2 > 0.

Thus we conclude that (100) would not be obeyed if m = 0.

A.2 Proof of Part I for flowed representations

Now we would like to generalize the above discussion to the spectral flowed representa-

tions that we called Ĉα,w
1/2+is and D̂+,w

j̃
. In the case of discrete representations we want

to show that the no ghost theorem holds for 0 < j̃ < k/2 where j̃ labels the represen-

tation before we perform the spectral flow operation, i.e. it labels a representation of

the current algebra with L̃0 bounded below. So we consider the same representations

we had above but we modify the physical state conditions. This is equivalent to impos-

ing the usual conditions on the flowed representations. We would like to prove that,

given any state built on a lowest weight or continuous representation with respect to

J̃n, the physical state condition (Ln − δn,0)|ψ〉 = 0 n ≥ 0 with respect to Ln removes

non-negative norm states. We only consider spectral flow with w > 1 on continuous

or lowest weight representations D̂+
j̃
. These and their complex conjugates cover all the

representations we needed to consider. We reproduce now the steps in A.1.

Step 1: In (96) we need to show that they form a basis with L−n = L̃−n − wJ̃3
−n. We

know that they would form a basis if we had an expression like (96)with L−n → L̃−n.

Fortunately there is an invertible one to one map between these two sets of states, so

that they form a basis.

Step 2: It is the same since only c = 26 is used.

Step 3: If we write a physical state, |ψ〉, as a state with no L−n then L(3)
n with n ≥ 1

annihilates it. Again we will try to show that m = m̃+ kw/2 is nonzero and that will
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imply that J3
n>0|ψ〉 = 0. For this we need to use the new mass shell condition

c̃2
k − 2

+ Ñ + h′ − wm+
kw2

4
= 1 (102)

where Ñ is the level inside the current algebra before the spectral flow, c̃2 is the

second casimir in terms of j̃ and h′ is the conformal weight of state in the internal

conformal theory (the internal piece needs not be a primary state, and we only require

that the whole combined state needs to be primary). We can assume with no loss of

generality that w ≥ 1. Let us start with the spectral flow of a continuous representation,

(102)implies that if m = 0 then Ñ = 0 and and there are no negative norm states.

(The only solution with m = 0 is in the case of k = 3 and j̃ = 1/2).

Let us turn to lowest weight representations. Thanks to the restriction 0 < j̃ < k/2,

we have c̃2/(k − 2) > −k/4. Therefore, if m = 0, the left hand side of (102) is larger

than k/4(w2 − 1). If w ≥ 2, (102) cannot be obeyed. If w = 1, m = 0 implies

m̃ = −k/2 and Ñ in (102) has to be at least Ñ ≥ j̃ + k/2. However, in this case we

find c̃2/(k − 2) + Ñ + k/4 ≥ k/2 + j̃ > 1 (here we used k > 2) and again (102) is not

satisfied.

So we conclude that all states can be mapped into states obeying J3
n>0|ψ〉 = 0.

B Partition function

In this Appendix, we discuss the partition function of the SL(2, R) WZW model and

its modular invariance.

B.1 Partition function of the SU(2) model

Before we begin discussing the modular invariance of the SL(2, R) theory, let us review

the case of SU(2).

The characters χk
l (τ, θ) (l = 0, 1

2
, 1, · · · k

2
) of the irreducible representations of the

SU(2)k affine algebra transform under the modular transformation as

χk
l (−1/τ,−θ/τ) = exp

(
2πi

k

4

θ2

τ

)∑

l′
Sll′χ

k
l′(τ, θ), (103)

where Sll′ is some orthonormal (k+1)×(k+1) matrix. The diagonal (so-called Ak-type)

modular invariant combination is therefore

e−2π k

2
(Imθ)2

Imτ

∑

l

|χl(τ, θ)|2. (104)
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The exponential factor e−2π k

2
(Imθ)2

Imτ is there to cancel the exponential factor in (103) as

[Im(−θ/τ)]2
Im(−1/τ)

=
(Imθ)2

Imτ
+ i

θ2

2τ
− i

θ̄2

2τ̄
. (105)

It is known that the exponential factor in (104) is a consequence of the chiral anomaly

and therefore of the OPE singularity,

J3(z)J3(w) ∼ k/2

(z − w)2
. (106)

B.2 Partition function of the SL(2,C)/SU(2) model

In string theory, one-loop computations are done after performing the Euclidean rota-

tion on both the target space and the worldsheet (or stay in the Lorentzian signature

space and use the iǫ prescription). The modular invariance of the partition function

is imposed on the Euclidean worldsheet. In our case, the Euclidean rotation of the

target space means SL(2, R) → H3 = SL(2, C)/SU(2). The partition function of the

SL(2, C)/SU(2) model has been evaluated in [18] as

ZSL(2,C)/SU(2) ∼
1

√
Imτe

−2π(Imθ)2

Imτ |ϑ1(τ, θ)|2
. (107)

Note that our definition of the partition function differs from that in [18] by the factor

e2π k

2
(Imθ)2

Imτ . It apears that, without this factor, the partition function is not modular

invariant18. One may expect that this partition function is related to the one for the

SL(2, R) model by the Euclidean rotation. In the discussion below, we first evaluate

the SL(2, R) partition function on the Lorentzian torus, and therefore take τ, τ̄ , θ, θ̄

to be independent real variables. We then analytically continue them to complex

values so that (τ, θ) are complex conjugate of (τ̄ , θ̄). We will find that, by doing this

analytic continuation, and ignoring contact terms, the SL(2, R) partition function turns

into the SL(2, C)/SU(2) partition function (107), provided we impose the constraint

1/2 < j < (k − 1)/2 on the discrete representations.

18The puzzle about the apparent lack of the the modular invariance was recently resolved in [42].
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B.3 Discrete representations of SL(2,R)

The character of the discrete representation D+
j is

χ+
j (τ, θ) =Tr(e2πiτ(L0−

k

8(k−2)
)e2πiθJ3

0 )

=
exp

[
2πiτ

(
− j(j−1)

k−2
− k

8(k−2)

)
+ 2πiθj

]

(1 − e2πiθ)
∏∞

n=1(1 − e2πinτ )(1 − e2πinτe2πiθ)(1 − e2πinτe−2πiθ)

=
exp

[
−2πiτ

k−2
(j − 1

2
)2 + 2πiθ(j − 1

2
)
]

iϑ1(τ, θ)
.

(108)

where ϑ1(τ, θ) is the elliptic theta-function

ϑ1(τ, θ) = −i
∞∑

n=−∞

(−1)nexp

[
πiτ

(
n− 1

2

)2

+ 2πiθ
(
n− 1

2

)]
. (109)

The spectral flow

L̃0 = L0 + wJ3
0 − k

4
w2, J̃3

0 = J3
0 − k

2
w, (w = 0,±1,±2, · · ·), (110)

transforms the character χ+
j as

Tr(e2πiτ(L̃0−
k

8(k−2)
)e2πiθJ̃3

0 )

=Tr(e2πiτ(L0+wJ3
0−

k

4
w2− k

8(k−2)
)e2πiθ(J3

0−
k

2
w))

=
exp

[
−2πiτ

(
(j− 1

2
)2

k−2
− w(j − 1

2
) + k

4
w2

)
+ 2πiθ(j − 1

2
− k

2
w)
]

iϑ1(τ, θ + wτ)

=(−1)w
exp

[
−2πiτ

k−2
(j − 1

2
− k−2

2
w)2 + 2πiθ(j − 1

2
− k−2

2
w)
]

iϑ1(τ, θ)
,

(111)

where we used

ϑ1(τ, θ + wτ) = (−1)wexp
(
−πiτw2 − 2πiθw

)
ϑ1(τ, θ). (112)

We have also performed an analytic continuation such as

∞∑

n=0

qn = −
∞∑

n=1

q−n,

ignoring terms like
∑∞

n=−∞ qn ∼ δ(τ). From here on, we allow (τ, θ) to take complex

values and (τ̄ , θ̄) to be their complex conjugates.

Let us sum over allowed representation. According to our proposal about the Hilbert

space of the WZW model, all the representations in the allowed range 1/2 < j <
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(k − 1)/2 should appear. We also require that the spectrum to be invariant under the

spectral flow (110), so we need to sum over w. The part of the partition function made

by discrete representations is then

e+2π k

2
(Imθ)2

Imτ

∞∑

w=−∞

∫ (k−1)/2

1/2
dj

exp
[

4πImτ
k−2

(j − 1
2
− k−2

2
w)2 − 4πImθ(j − 1

2
− k−2

2
w)
]

|ϑ1(τ, θ)|2

= e+2π k

2
(Imθ)2

Imτ

∫ ∞

−∞
dt

exp
[

4πImτ
k−2

t2 − 4πImθt
]

|ϑ1(τ, θ)|2

∼ 1
√
Imτe−2π

(Imθ)2

Imτ |ϑ1(τ, θ)|2
.

(113)

It is interesting to note that the j-integral over the range 1/2 < j < (k− 1)/2 and the

sum over w fit together to give the t-integral over −∞ < t <∞. Since the spectral flow

with w = 1 maps D+
j to D−

k/2−j, we do not have to consider the orbit of D−
j separately.

The exponential factor e+2π k

2
(Imθ)2

Imτ is due to the chiral anomaly, as in the SU(2) case.

The sign in the exponent is opposite here since the sign of the OPE of J3 is opposite

in the SL(2, R) case.

The partition function computed in (113) is manifestly modular invariant. In fact, it

is identical to (107) computed for the SL(2, C)/SU(2) model. This gives an additional

support for our claim that the Hilbert space of the SL(2, R) model contains the discrete

representations of 1/2 < j < (k − 1)/2 and their spectral flow.

The construction of the partition function here is closely related to the one given in

[13]. There, instead of the integral over j in (113), the partition function was given by

a sum over integral values of j. This is because they considered the string theory on

the single cover of the SL(2, R) group manifold with the closed timelike curve. The

resulting partition function, after analytic continuation, is also modular invariant and

appears to be a correct one for such a model. It is, however, different from the partition

function (107) of the SL(2, C)/SU(2) model, as it should since the Euclidean rotation

of the SL(2, C)/SU(2) model is naturally related to the model on the universal cover

of SL(2, R) rather than on its single cover.

B.4 Continuous representations

It is curious that the sum over the discrete representations and their spectral flow

alone reproduces the partition function of the SL(2, C)/SU(2) model. In fact, the

sum over the continuous representations and their spectral flow, although formally

modular invariant by itself, does not contribute to the partition function if we assume

the analytic continuation in τ, τ̄ , θ, θ̄ and ignore contact terms.
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The character of the continuous representation is parametrized by a pair of real

numbers (s, α) with 0 ≤ α < 1 and s arbitrary. The character is given by

χj=1/2+is,α = η−3e2πi s
2

k−2
τeiαθ

∑

n

e2πinθ. (114)

As before, we regard the worldsheet metric to be of the Minkowski signature, and θ is

real. So the sum
∑

n in the definition of χj,α gives the periodic delta-function

∑

n

e2πinθ = 2π
∑

m

δ(θ +m). (115)

After the spectral flow (110), the character becomes

χj=1/2+is,α;w = η−3e
2πi

(
s
2

k−2
+ k

4
w2

)
τ
2π
∑

m

e2πim(α− k

2
w)δ(θ + wτ +m). (116)

Now let us take |χ1/2+is,α;w|2 and integrate over s and α. The integral over α forces

mL = mR in the summation in (116). The integral over s gives the factor 1/
√
Imτ .

So we have
∫ ∞

−∞
ds
∫ 1

0
dα|χ1/2+is,α;w|2 = e−4πImτ k

4
w2 1√

Imτ |η|6
∑

m

δ(2)(θ + wτ +m). (117)

Let us sum this over w. We get a non-zero result only when there is some integer w

such that

w = −Imθ
Imτ

. (118)

Therefore

e+2π k

2
(Imθ)2

Imτ

∑

w

∫ ∞

−∞
ds
∫ 1

0
dα|χ1/2+is,α;w|2

=
1√

Imτ |η|6
∑

w,m

δ(2)(θ + wτ +m).
(119)

This expression is formally modular invariant since
∑

w,m sums over the modular orbit

of the delta-function and 1/|η|4 cancels its modular weight. If we assume the analytic

continuation, terms of this form are all set equal to zero. So, in this sense, the continu-

ous representation does not contribute to the partition function of the SL(2, C)/SU(2)

theory after the Euclidean rotation.
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